FIBPlus Developer’s Guide
Part1

Database connection

To connect to a database (DB) you should use the TpFIBDatabase component. For more
details about its properties and methods read FIBPlus help file.

Connection parameters

Connection parameters are typical for InterBase/Firebird server:
« path to a database file;
« user name and password;
. userrole;
- charset;
« dialect;
+ client library (gds32.dll for InterBase and fbclient.dll for Firebird).

To set all the properties at once you can use a built-in connection setting dialog (see picture
1).

The dialog «Database Editor» can be invoked from the component context menu (right click
on the component) at design-time.

Here you may set all necessary parameters, including getting them from/saving them to Alias.
You may also check whether the parameters are correct by using a test connection.

Connection Properties 5[

Databaze ID:'xFireI:nird_'I _Bhexamples\EMFPLOYEE.FDB

|

—Connection Parameter

Uszer name ISYSDBA pazsword=masterkey
uzer_name=5v50BA

Pazzwaord Imasterke_l,l lc_ctype=tOME

Role I

CharSet |NEINE |

SOL Dialect |3 j [T Use login prompt

Client Library Ifl:u:lient.u:lll

L

— Server
" Local engine {* Bemate server ak.
Server Hetwork protocol Cancel
lncalhost TCPAP =]
) Test
Aliaz name Ie:-camples_emplnyee j ¥ Save Aliaz

Figure 1. Connection Properties TpFIBDatabase

Similar to the actions in the dialog, you can do the same in the application code.

To connect to a database you should call the Open method or set the Connected property to
True. It’s also possible to use this code to connect to a database:

function Login (DataBase: TpFIBDatabase; dbpath, uname, upass, urole: string):
Boolean;

begin
if DataBase.Connected then DataBase.Connected := False;
with FDataBase.ConnectParams do begin
UserName := uname;
Password := upass;
RoleName := urole;
end;
DataBase.DBName := dbpath;
try DataBase.Connected := True;
except

on e: Exception do
ShowMessage (e.Message) ;
end;
Result := DataBase.Connected;
end;
To close the connection either call the Close method or set the Connected property to False.

You can also close all datasets and connected transactions at once:

procedure Logout (DataBase: TpFIBDatabase);
var i: Integer;

begin
if not DataBase.Connected then
Exit;
for i := 0 to DataBase.TransactionCount - 1 do
if TpFIBTransaction (DataBase.Transactions[i]).InTransaction then

TpFIBTransaction (DataBase.Transactions[i]) .Rollback
DataBase.CloseDataSets;
DataBase.Close;
end;

How to create and drop database

It’s very easy to create a new DB. You need to set DB parameters and call the CreateDatabase
method:

Delphi
with Databasel do begin
DBParams.Clear;
DBParams.Add ('USER ''SYSDBA'' PASSWORD ''masterkey''"');
DBParams.Add ('PAGE SIZE = 2048'");
DBParams.Add ('DEFAULT CHARACTER SET WIN1251"'");

DBName := 'SERV_DB:C:\DB\TEST.IB';
SQLDialect := 3;

end;

try
Databasel.CreateDataBase;

except

// Error handling

end;

C++

Databasel->DBParams->Clear () ;

Databasel->DBParams—>Add ("USER 'SYSDBA' PASSWORD 'masterkey'");
Databasel->DBParams->Add ("PAGE SIZE = 2048");
Databasel->DBParams—->Add ("DEFAULT CHARACTER SET WIN1251");
Databasel->DBName = "SERV DB:C:\\DB\\TEST.GDB";
Databasel->SQLDialect = 3;

try
{ Databasel->CreateDatabase(); }
catch (...)
{ // Error
}

To drop a database, use the DropDatabase method. Note: you should be connected to the
database when using this method.

Metadata caching

FIBPlus enables developers to get system information about field tables automatically, set in
TpFIBDataSet such field properties as Required (for NOT NULL fields), ReadOnly (for
calculated fields) and DefaultExpression (for fields with default database values). This feature is
very useful for both programmers and users, because programmers do not need to set property
values manually when writing client applications, and users get clearer messages when working
with the programme e.g. if any field is NOT NULL, and the user attempts to leave it empty, he
will see a message «Field ‘..."” must have a value.». This is more understandable than a system
InterBase/Firebird PRIMARY KEY violation error. The same with calculated fields, it is not
possible to edit such fields, so FIBPlus will set the ReadOnly property to True for all calculated
fields, and the user will not get a vague message on trying to change the field values in
TDBGrid.

This feature has one disadvantage, which is revealed on low speed connections. To get
information on fields, FIBPlus components execute additional “internal queries” on
InterBase/Firebird system tables. If there are many tables in the application, or many fields in
these tables, the application work can slow down anB net traffic increase. This becomes
especially obvious on first query opening, as every open query is followed by the internal
queires. On subsequent opening of the query, FIBPlus uses the information, which has already
been obtained, but users may notice a slight work slowdown when the application starts.

This is where Metadata caching comes in. TpFIBDatabase enables developers to save
metadata information at the client machine and use it during the applications execution and

subsequent executions. The TCacheSchemaOptions.property is responsible for this process:

TCacheSchemaOptions = class (TPersistent)
property LocalCacheFile: string;
property AutoSaveToFile: Boolean .. default False;
property AutolLoadFromFile: Boolean .. default False;
property ValidateAfterLoad: Boolean .. default True;
end;

The LocalCacheFile property sets the name of the local cache file where this information will
be saved. AutoSaveToFile helps to save cache to the file automatically on closing the
application. AutoLoadFromFile loads cache from the file. And ValidateAfterLoad defines
whether it’s necessary to check the saved cache after its loading. Besides there is an
OnAcceptCacheSchema event, where you may define objects, for which you don’t need to load
the saved information.

This property is also very easy-to-use.

with pFIBDatabasel.CacheSchemaOptions do begin

LocalCacheFile := 'fibplus.cache';
AutoSaveToFile := True;
AutoLoadFromFile := True;
ValidateAfterLoad:= True;

end;

To summarize, FIBPlus gathers information about fields accessed in a TpFIBDataset. This
information is used to set properties on TField's. To reduce the overhead this introduces, the
TpFIBDatabase can be set to save and load this cache between program executions.

BLOB field caching

BLOB field caching at the client is one more unique FIBPlus feature. Blobs are unique in
InterBase/Firebird compared to other datatypes. When returned in a query, what is actually
returned is a BLOB ID. When the field value is required, FIBPlus automatically asks the server
for the data that relates to the BLOB ID, i.e. generating at least one more round trip to the server.
This can create a performance bottleneck when the same BLOB is retrieved a number of times.
BLOB field Caching helps reduce this performance hit.

If BlobSwapSupport.Active := True, FIBPlus will automatically save fetched BLOB fields in
the defined directory (the SwapDir property).By default the SwapDir property is equal to
{APP_PATH}, that is, it sets the directory with the executed application. You can also set the
directory where to save BLOB fields. I.e., SwapDir :='{APP_PATH}'+ \BLOB_FILES\

There are four events enabling work with this property in TpFIBDatabase:

property BeforeSaveBlobToSwap: TBeforeSaveBlobToSwap;
property AfterSaveBlobToSwap: TAfterSaveLoadBlobSwap;
property AfterlLoadBlobFromSwap: TAfterSaveLoadBlobSwap;
property BeforeloadBlobFromSwap: TBeforeLoadBlobFromSwap;

where

TBeforeSaveBlobToSwap = procedure (const TableName, FieldName: string;
RecordKeyValues: array of variant; Stream: TStream; var FileName: string; var
CanSave: boolean) of object;

TAfterSaveloadBlobSwap = procedure (const TableName, FieldName: string;
RecordKeyValues: array of variant; const FileName: string) of object;
TBeforeLoadBlobFromSwap = procedure (const TableName, FieldName: string;
RecordKeyValues: array of variant; var FileName: string; wvar CanLoad:
boolean) of object;

You do not need to worry about these event handlers unless you want more control over how
the BLOB field cache works. Event handlers help to manage BLOB field saving and reading
from the disc. In particular you can forbid saving some BLOB field in event handlers depending
on the field name and the table name, on other field values, free disc space, etc.

You can also save BLOB fields by using the MinBlobSizeToSwap property. There you can
set a minimal BLOB field size for saving at disk..

This technology has a number of limitations:
1. The table must have a primary key.
2. BLOB fields must be read by the TpFIBDataSet component.

3. Your application must monitor the free disk space. For these purposes you can use the
even handler BeforeSaveBlobToSwap.

4. Unfortunately all BLOB_ID’s are changed after database backup/restore, so local cache
becomes useless and is automatically cleared. After each application connection to the
database, FIBPlus automatically opens a special thread, which checks in a separate
connection the whole disk cache on BLOB fields. If there are no BLOB fields, the
corresponding files are immediately deleted.

Client BLOB filters

These are user functions which help to handle (encrypt, pack, unpack, etc) BLOB fields at the
client transparently for the user application. This feature helps you to pack or code blob fields in
a database without changing the client application. FIBPlus has a mechanism of client BLOB
filters similar to the one built in InterBase/Firebird. An advantage of a local blob-filter is an
ability to decrease network traffic of the application considerably if you pack blob-fields before
sending them to and then unpack them after getting to the client. This is done by means of
registering two procedures for reading and writing blob-fields in TpFIBDatabase. As a result
FIBPlus will automatically use these procedures to handle all blob-fields of the set type in all
TpFIBDataSets using one TpFIBDatabase instance.

To illustrate this technology we will write an example of handlers which will pack and unpack
each BLOB field and register these handlers. Note: Remember that user BLOB field subtype
must be negative, the positive values allocated to InterBase/Firebird itself.

If you need to pack BLOB fields, write these two methods:

procedure PackBuffer (var Buffer: PChar; var BufSize: LonglInt);
var srcStream, dstStream: TStream;

begin
srcStream := TMemoryStream.Create;
dstStream := TMemoryStream.Create;
try
srcStream.WriteBuffer (Buffer”, BufSize);
srcStream.Position := 0;

GZipStream(srcStream, dstStream, 6);
srcStream.Free;

srcStream := nil;
BufSize := dstStream.Size;
dstStream.Position := 0;

ReallocMem (Buffer, BufSize);
dstStream.ReadBuffer (Buffer”, BufSize);
finally
if Assigned(srcStream) then srcStream.Free;
dstStream.Free;
end;
end;

procedure UnpackBuffer (var Buffer: PChar; wvar BufSize: LongInt);
var srcStream,dstStream: TStream;

begin
srcStream := TMemoryStream.Create;
dstStream := TMemoryStream.Create;
try
srcStream.WriteBuffer (Buffer”, BufSize);
srcStream.Position := 0;

GunZipStream(srcStream, dstStream);
srcStream.Free;
srcStream:=nil;
BufSize := dstStream.Size;
dstStream.Position := 0;
ReallocMem (Buffer, BufSize);
dstStream.ReadBuffer (Buffer”, BufSize);

finally
if assigned(srcStream) then srcStream.Free;
dstStream.Free;

end;

end;

Now we need to register the two methods before connecting to a database. Call the
RegisterBlobFilter function. The first parameter value is BLOB field type (equals to —15), the
second and third are packing and unpacking functions:

pFIBDatabasel.RegisterBlobFilter(-15, @PackBuffer, @UnpackBuffer);

You can also see the demo example BlobFilters for more details.

Handling lost connections

FIBPlus provides the developers with a unique feature of handling lost connections between
the client and server. TpFIBDatabase and TpFIBErrorHandler components are responsible for
handling this.

You can see the example ConnectionLost for demonstration. The notes below will explain
how it works. The TpFIBDatabase has three special events

AfterRestoreConnect — fires if the connection was restored.

OnLostConnect — fires on the lost connection if any operation with the database caused an
error. Here you can specify one of the three following actions (see the TonLostConnectActions
description) - close the application, ignore the error report or try to restore the connection.

OnErrorRestoreConnect — fires if the connection was not restored.

In the example when the connection is lost, the user has a number of choices. If the
connection has been restored successfully, the corresponding message is shown. If the error
occurs, you can count the number of restore attempts or do any other necessary actions.

We will provide you with more details about TpFIBErrorHandler in the corresponding event.
If the connection is lost, the event handler suppresses the standard exception message.

procedure TForml.dbAfterRestoreConnect (Database: TFIBDatabase);
begin

MessageDlg('Connection restored', mtInformation, [mbOk], O0);
end;

procedure TForml.dbErrorRestoreConnect (Database: TFIBDatabase;
E: EFIBError; var Actions: TOnLostConnectActions);

begin
Inc (AttemptRest) ;
Label4.Caption:=IntToStr (AttemptRest) ;

Labeld4 .Refresh
end;

procedure TForml.dbLostConnect (Database: TFIBDatabase; E: EFIBError;
var Actions: TOnLostConnectActions);

begin
case cmbKindOnLost.ItemIndex of
0: begin
Actions := laCloseConnect;
MessageDlg ('Connection lost. TpFIBDatabase will be closed!'’',
mtInformation, [mbOk], 0);
end;
1:begin
Actions := laTerminateApp;
MessageDlg ('Connection lost. Application will be closed!'’',
mtInformation, [mbOk], O
) ;
end;
2:Actions := laWaitRestore;
end;
end;

procedure TForml.pFibErrorHandlerlFIBErrorEvent (Sender: TObject;
ErrorValue: EFIBError; KindIBError: TKindIBError; wvar DoRaise: Boolean);
begin
if KindIBError = keLostConnect then begin
DoRaise := false;
Abort;
end;
end;

Other useful methods

The TpFIBDatabase component has many useful methods. We will consider the most common
of them.

How to execute simple SQL- queries
If you need to execute a simple SQL query in order to get or set some application parameters,
use the following methods:

function Execute (const SQL: string): boolean;
- executes an SQL-query, transferred in the SQL parameter, and returns True if the query was a
success.

function QueryValue (const aSQL: string; FieldNo:integer; ParamValues:array of
variant; aTransaction:TFIBTransaction=nil) :Variant; overload;

- it gets a field value with the FieldNo index as a result of executing aSQL in aTransaction. If
you do not set the transaction, DefaultTransaction will be used. You can send parameters to the
query. The value will be returned as a Variant variable. Use QueryValueAsStr to get a value as a
string, and QueryValues — as an array. Remember that in this case the SQL must return not more
than one string.

How to get generator values
Use the following method to get generator values:

function Gen Id(const GeneratorName: string; Step: 1Int64; aTransaction:
TFIBTransaction = nil): Int64;

How to get information about tables and fields
procedure GetTableNames (TableNames: TStrings; WithSystem: Boolean);
procedure GetFieldNames (const TableName: string; FieldNames: TStrings;

WithComputedFields: Boolean = True);
The first method gets all table names and fills the TableNames list. The WithSystem
parameter indicates whether to show system table names.

The second method takes TableName and fills FieldNames with the field names. The
WithComputedFields parameter indicates whether to include COMPUTED BY fields.

Working with transactions
A transaction is an operation of database transfer from one consistent state to another.

All operations with the dataset (data/metadata changes) are done in the context of a
transaction. To understand special FIBPlus features completely you need to know about
InterBase / FIBPlus transactions. Please read the topic «Working with Transaction» in
ApiGuide.pdf for InterBase.

All the changes done in the transaction can be either committed (in case there are no errors) by
Commit or rolled back (Rollback). Besides these basic methods TpFIBTransaction has their
context saving analogues: CommitRetaining and RollbackRetaining, i.e. on the client side, these
will not close a TpFibQuery or TpFibDataset.

To start the transaction you should call the StartTransaction method or set the Active property
to True. To commit the transaction call Commit/CommitRetaing, to roll it back -
Rollback/RollbackRetaining.

TpFIBQuery and TpFIBDataSet components have some properties which help to control
transactions automatically. In particular they are: the TpFIBDataSet. AutoCommit property; the
poStartTransaction parameter in TpFIBDataSet.Options; qoStartTransaction and
goCommitTransaction in TpFIBQuery.Options.

How to set transaction parameters

Transaction parameters are not a trivial topic and require much explanation, so FIBPlus
DevGuide won’t cover the subject in detail. We highly recommend you to read InterBase
ApiGuide.pdf to understand how transactions work.

Nevertheless in most cases you do not need to know about all peculiarities of transaction control
at the API level. FIBPlus has a number of mechanisms which help developers’ work easier. I.e.
TpFIBTransaction has three basic transaction types: tpbDefault, tpbReadCommited,
tpbRepeatableRead. At design time you can also create special types of your own in the
TpFIBTransaction editor and use them as internal ones. Set the transaction type to set its
parameters::

TpbDefault — parameters must be set in TRParams
tbpReadCommited — shows the ReadCommited isolation level

tbpRepeatableRead — shows the RepeatableRead isolation level

Planning to use transactions in the application

Efficient InterBase/Firebird applications depend heavily on correct transaction use. In a multi-
generation architecture (record versioning) Update transactions retain record versions.

So in general try to make the Update transactions as short as possible. Read-only transactions
can remain open because they do not retain versions.

Transaction Editor :trread. x|

Kind of transaction {00

Settings:

read

rioaait Mew kind

[BC_WErsion

read_committed Save kind
Export o [M]
Irnpart framm (M

ok Cancel

Figure 2. Transaction Editor

How to use SavePoints

InterBase/Firebird servers do not support nested transactions. But InterBase 7.X and Firebird
1.5 support SavePoints. FIBPlus realizes this functionality by three methods:
procedure SetSavePoint (const SavePointName:string) ;

procedure RollBackToSavePoint (const SavePointName:string) ;
procedure ReleaseSavePoint (const SavePointName:string);

The first method sets a save point with the SavePointName name. The second rolls the
transaction back to SavePointName. The third releases SavePointName server resources.

SQL-query execution
An application works with a database by issuing SQL _instructions. They are used to get and
modify data\metadata. FIBPlus has a special TpFIBQuery component responsible for SQL

operator execution. This robust, light and powerful component can perform any actions with the
database.

TpFIBQuery is very easy-to-use: just set the TpFIBDatabase component, fill in the SQL
property and call any ExecQuery method (ExecQueryWP, ExecQueryWPS).

NOTE: The tpFIBQuery is not a TDataset descendant, so it does not act in exactly the same
way or exhibit the same methods / properties as you would expect to find in a dataset. For the
TDataset descendant, please refer to the TpFIBDataset.

The example below will show how to create TpFIBQuery dynamically at run-time and thus get
data about clients.

var sqgl: TpFIBQuery;

sql := TpFIBQuery.Create(nil);
with sgl do
try
Database := db;
Transaction := db.DefaultTransaction;
SQL.Text := 'select first name, last name from customer';
ExecQuery;
while not Eof do begin
Memol.Lines.Add (
FldByName ['FIRST NAME'].AsString+' '+
FldByName ['LASTST NAME'].AsString);
Next;

end;

sgl.Close;
finally

sql.Free;
end;

How to transfer parameters

Very often you need to use parameters in SQL queries. To this end FIBPlus has the Params
property and TpFIBQuery methods ParamsCount, ParamByName. Besides there are some
ExecWP methods (execute with parameters), which execute queries with preset parameters. It’s
really easy to use parameters as you can see from the code samples below:

sgl.SQL.Text :=
'select first name, last name from customer'+
'where first name starting with :first name';

{ variant 1 }
sgl.ParamByName ('first name') .AsString := 'A';
sgl.ExecQuery;

{ variant 2 }
sgl.ExecWP ('first name', ['A']);

{ variant 3 }
sql.ExecWP(['A']);

SQL- sections

FIBPlus provides developers with a wide range of SQL query control capabilities. In particular
they are SQL sections: a list of fields, conditions, grouping and sorting order, query execution
plan. Effectively FIBPlus parses your SQL and identifies the following elements of an SQL
statement. These simple string properties can be read and modified:

FieldsClause — has a field list;

MainWhereClause — has the main clause WHERE (see the details below);
OrderClause — has the clause «order by»;

GroupByClause — has the clause «group by»;

PlanClause — has the clause «plany.

FIBPlus also has unique features, such as macros and conditions — an extended mechanism of
work with the WHERE clause. The sections below will provide you with more details about
these features.

Macros

Macros help you to operate with the variable parts of your queries. This allows you to change
and specify the queries without rewriting the query code.

The macro syntax is @@<MACROS_NAME>[%<DEFAULT_VALUE>|[#|@

So macro is a specific order of symbols between the marks @@ and @. The parameter
<MACROS_NAME> is obligatory after @@. You can also set the default macro value after the
symbol “%”. Besides you can set the parameter # (not obligatory), it will make FIBPlus write
parameter names in inverted commas.

Macros are used similar to parameters. This code example will demonstrate you this similarity:

Sgl.SQL.Text := 'select * from @@table clause@ where @@where clause% 1=1Q';
Sqgl.ExecWP (['CUSTOMER', 'FIRST NAME STARTING WITH ''A''']);

Call the SetDefaultMacroValue method of the object parameter to set the default macro value.

Macro can also have a parameter. To search for it use the FindParam function, to set the
parameter use the ParamByName method:

Sgl.SQL.Text := 'select * from @@table clause@ where @@where clause% 1=1Q';

Sgl.Params[0] .AsString := 'CUSTOMER';

Sgl.Params[1l].AsString := 'CUST NO = :CUST NO';

if Assigned(Sgl.FindParam('CUST NO')) then
Sgl.ParamByName ('CUST NO') .AsInteger := 1001;

Sqgl.ExecQuery;

You can also see the code example ServerFilterMarcoses to get to know how to use macros for
TpFIBDataSet

Conditions

The mechanism of conditions is another option to change the variable part of your SQL-
queries

You can set one or more parameter conditions for any SQL at design time or runtime. The
built-in dialog shown in picture 3 is very convenient for these purposes.

7+ Edit Conditions -10] x|
— Condition text
Add
CL1S_COMPLETED =1
Edit
Delete
Clear
Ok
LCance

— Condition Mames

B_COPLETED
O ev_WNOT_COMPLETED

Figure 3. Edit Conditions.

To make the condition active you should set the Active property to True.
pFIBQueryl.Conditions[0].Active := True;

or

pFIBQueryl.Conditions.ByName('by customer').Active := True;

This is a sample code showing how to work with Conditions:

if pFIBQueryl.Open then pFIBQueryl.Close;
pFIBQueryl.Conditions.CancelApply;

pFIBQueryl.Conditions.Clear;
if byCustomerFlag then
pFIBQueryl.Conditions.AddCondition('by customer', 'cust no = 1001',
True) ;
pFIBQueryl.Conditons.Apply;
pFIBQueryl.Open;

TpFIBDataSet has two additional methods CancelConditions and ApplyConditions, which call
correspondingly Conditions.Cancel and Conditions.Apply. This code sample for TpFIBDataSet
is simpler than the previous.
with pFIBDataSetl do begin

if Active then Close;

CancelConditioins;

Conditions.Clear;

if byCustomerFlag then Conditions.AddCondition('by customer', 'cust no =
1001', True);

ApplyConditions;

Open;
end;

You can also see the example ServerFilterConditions to get to know how to set conditions for
TpFIBDataSet.

Batch processing

FIBPlus has internal methods for batch processing, called Batch methods. These methods can
be helpful for replication between databases and import/export operations.
function BatchInput (InputObject: TFIBBatchInputStream) :boolean;
function BatchOutput (OutputObject: TFIBBatchOutputStream) :boolean;
procedure BatchInputRawFile (const FileName:string) ;

procedure BatchOutputRawFile (const FileName:string;Version:integer=1);
procedure BatchToQuery (ToQuery:TFIBQuery; Mappings:TStrings);

The Version parameter is responsible for format compatibility with old file versions, created
by FIBPlus BatchOutputXXX method. If Version = 1, FIBPlus uses an old principle of work
with file versions: the external file keeps data ordered by SQL query fields. It is supposed that on
reading data saved by the BatchInputRawFile method, parameters will have the same order in the
reading SQL. The number of TpFIBQuery fields (the source of the data) must coincide to the
number of TpFIBQuery parameters which will read the data. For string fields it is important to
have the same length for the field being written and for the reading parameter whereas their
names can differ.

If Version = 2, FIBPIlus uses a new principle of writing data. Besides the data, the file also
keeps system information about fields (name, type and length). On reading the data, it will be
chosen by similar names. The order and number of fields in the writing TpFIBQuery can differ
from those of parameters in the reading TpFIBQuery. Their types and length can also differ.
Only names must coincide.

It’s very easy to work with batch methods. We will show this using a simple example. The
code below consists of three parts. The first saves data about clients into an external file, the
second loads them into a database and the third shows how to change the data.

{ I}

PFIBQueryl.SQL := 'select EMP NO, FIRST NAME, LAST NAME from CUSOMER';
pFIBQueryl.BatchOutputRawFile ('employee buffer.fibplus', 1);

{ IT }
pFIBQueryl.SQL := 'insert into employees (EMP NO, FIRST NAME, LAST NAME) '+
' Values(:EMPiNO, :FIRST NAME, :LASTiNAME)';

pFIBQueryl.BatchInputRawFile ('employee buffer.fibplus');

{ IIT }

PFIBQueryl.SQL : 'select EMP NO, FIRST NAME, LAST NAME from CUSOMER';

pPFIBQuery2.SQL := 'insert into tmp employees (EMP _NO, FIRST NAME, LAST NAME) '+
' values (:EMP_NO, :FIRST NAME, :LAST NAME)';

mapStrings.Add ('EMP_NO=EMP NO');
mapStrings.Add ('FIRST NAME=FIRST NAME');
mapStrings.Add ('LAST NAME=LAST NAME');

pFIBQueryl.BatchToQuery (pFIBQuery2, mapStrings);

We will discuss more about batch processing when talking about TpFIBDataSet as it also has
some batch processing methods.

The OnBatchError event occurs in case of incorrect processing. Using the parameter
BatchErrorAction (TBatchErrorAction = (beFail, beAbort, beRetry, belgnore)) in the code of
this event you can decide what to do in this case.

Execution of stored procedures

Execution of stored procedures is very similar to query execution. You only need to write
'execute procedure some proc(:proc_param) in the SQL text or 'select * from
some_proc(:proc_param)' for selectable procedures (i.e. those that return a result set).

If non-selectable procedure returns any results you can get them after the query executing
using the Fields property.

Sgl.SQL.Text := 'execute procedure some proc(:proc_param)';
Sgl.ExecWP ([25])
ResultFieldl := Sgl.Fields[0].AsInteger;

This feature makes FIBPlus different from BDE, ADO and other libraries where input data
are also available through parameters.

Besides, FIBPlus enables developers to execute stored procedures by using the
TpFIBStoredProc component. TpFIBStoredProc is a direct TpFIBQuery descendant with the
StoredProcName property. It is recommended to use TpFIBStoredProc to execute non-
selectable procedures.

How to execute DDL(Data Definition Language) commands.

DDL is the subset of SQL that allows you to change the structure of the database, e.g. to
create tables.

Besides SQL-operators TpFIBQuery helps to execute DDL-_commands. In order to be able to
execute a DDL-command you need to set the ParamsCheck property to False. New FIBPlus
versions support macros for DDL.

Recurrent use of queries

All client libraries including FIBPlus have to transfer the complete query text in order to
prepare a query for execution. Once you have a prepared query it is enough to transfer only
handle and parameter values. FIBPlus knows when you have changed the SQL in a
TpFIBQuery, so it will only prepare when it is required. By TpFIBPLus handling the preparing
of queries for you, it ensures re-using the same component for the same query, merely changing
the parameters, will offer optimum performance.

If however, your application does not lend itself to using the same query component for the
same query, FIBPlus offers a query pool mechanism. If there are numerous similar query
requirements in your application you can use methods from pFIBCacheQueries.pas to manage
the recurrent use:
function GetQueryForUse (aTransaction: TFIBTransaction; const SQLText:

string): TpFIBQuery;
procedure FreeQueryForUse (aFIBQuery: TpFIBQuery);

You don’t need to create TpFIBQuery instances. Being called for the first time the
GetQueryForUse procedure will create a TpFIBQuery instance and then will return a link to the
existing component when you execute the same query again and again. As you see, on every
recurrent procedure call FIBPlus will use the prepared query and thus transfer the query text to
the server only once. When you don’t need the recurrent query anymore (when the query results
are obtained from the TpFIBQuery component) you should call the FreeQueryForUse method.
Such FIBPlus mechanism is used for internal purposes i.e. on calling generators to get primary
key values. You can use these methods in your applications to optimize network traffic.

Work with datasets

The TpFIBDataSet component is responsible for work with datasets. It is based on the
TpFIBQuery component and helps to cache selection results. TpFIBDataSet is a TDataSet
descendant so it supports all TDataSet properties, events and methods. To get more information
about TDataSet please read Delphi/C++Builder help manuals.

Basic principles of work with datasets

TpFIBDataSet enables developers to select, insert, update and delete data. All these operations
are executed by TpFIBQuery components in TpFIBDataSet.

To select data you set the SelectSQL property. It’s similar to setting the SQL property of the
QSelect component (TpFIBQuery type). Define the InsertSQL.Text property to insert data,
UpdateSQL.Text to update, DeleteSQL.Text to delete and RefreshSQL.Text to refresh the data.

We will use a demo database employee.gdb (or .fdb for Firebird) to show how to write Select
SQL and get a list of all employees. We will write all queries in InsertSQL, UpdateSQL, etc.

with pFIBDataSetl do begin
if Active then Close;
SelectSQL.Text :=
'select CUST _NO, CUSTOMER, CONTACT FIRST, CONTACT LAST from CUSTOMER';

InsertSQL.Text :=
'insert into CUSTOMER (CUST NO, CUSTOMER, CONTACT FIRST, CONTACT LAST)'+
' values (:CUST NO, :CUSTOMER, :CONTACT FIRST, :CONTACT LAST)';

UpdateSQL.Text :=

'update CUSTOMER set CUSTOMER = :CUSTOMER, '+

'CONTACT FIRST = :CONTACT FIRST, CONTACT LAST = :CONTACT LAST '+
'where CUST NO = :CUST _NO';

DeleteSQL.Text := 'delete from CUSTOMER where CUST NO = :CUST NO';

RefreshSQL.Text :=
'select CUST NO, CUSTOMER, CONTACT FIRST, CONTACT LAST '+
'from CUSTOMER where CUST NO = :CUST NO';

Open;
end;

To open TpFIBDataSet either execute Open/OpenWP methods or set the Active property to
True. To close TpFIBDataSet call the Close method.

Don’t be concerned by seeing a lot of code lines, all these queries can be automatically created
by the TpFIBDataSet editor. You can call it from the component context menu, as shown in
picture 4.

}_._SQL edit :Form1.pFIBDataSetl =105
SelectS0L | Generate Modify SOLs | Modify SOLs |

A g4 " |_5‘|5' B! Generate SOL —Generate options
g SOL Kind:| Select i F'aramS_l,lmI:u:uI:IZ 'I

SELECT ;I [+ Beplace SAL [~ Usze Selected Fields Only

Eﬁi-gﬁigﬁoﬁAHE ¥ Use table alias
- _ 4 —Databaze objects

EMP.LAST NAME, B
EMP.PHONE EXT, iher by name |
EMP.HIRE DATE, [Tables/Views
EMP.DEPT NO,

EMP.JOE_CODE, DEPARTMENT
EMP.JOE_GRADE,
EMP.JOE_COUNTRY,

EMP.ZSALARY, Fields:

EMP.FULL MNAME
FROM

EMPLOYEE EHMF

Ll Pl LD Led

Domain |RDB$3

_I;I Field Type |VARCHAR(37)
F
[7 Not NULL

Kl

ok LCancel

Figure 4. TpFIBDataSet SOL Editor

The example DataSetBasic demonstrates basic use of editable TpFIBDataSet.

Automatic generation of Update queries
Besides TpFIBDataSet SQL editor, FIBPlus can generate all Update queries at run-time in a

more effective way than at design-time.

For this purpose use the AutoUpdateOptions property. This group of setting is very important
as it makes the coding process simpler and more convenient.

TAutoUpdateOptions= class (TPersistent)

property AutoParamsToFields: Boolean .. default False;
property AutoReWriteSgls: Boolean .. default False;
property CanChangeSQLs: Boolean .. default False;
property GeneratorName: string;

property GeneratorStep: Integer .. default 1;

property KeyFields: string;
property ParamsToFieldsLinks: TStrings;

property SeparateBlobUpdate: Boolean .. default False;
property UpdateOnlyModifiedFields: Boolean .. default False;
property UpdateTableName: string;

property WhenGetGenID: TWhenGetGenID .. default wgNever;

end;

TWhenGetGenID= (wgNever, wgOnNewRecord, wgBeforePost) ;

AutoRewriteSQLs - If there are empty SQLText properties for InsertSQL, UpdateSQL,
DeleteSQL, RefreshSQL they will be automatically generated by the SelectSQL, KeyFields and
UpdateTableName properties.

CanChangeSQLs informs that non-empty queries can be rewritten.
GeneratorName sets the generator name and GeneratorStep sets the generator step.
KeyFields contains a list of key fields.

SeparateBlobUpdate manages BLOB-field writing in a database. If SeparateBlobUpdate is set to
True at first a record will be saved without a BLOB-field and then if the operation is a success
the BLOB-fields will be also written to the database.

If UpdateOnlyModifiedFields is set to True and if CanChangeSQLs is set to True, a new SQL
query will be automatically created for each modifying operation. This SQL query will contain
only fields, which were changed.

UpdateTableName must contain a name of the modified table.

WhenGetGenld enables developers to set a mode of using a generator to form a primary key.
Either not to generate the primary key, to generate it on adding a new record, or before Post.

So due to AutoUpdateOptions settings FIBPlus helps not to generate modifying queries at
design-time and for this at run-time. To use this feature you just need to write a name of
modified table and the key field.

The code below is taken from the example AutoUpdateOptions. You can use this feature both
at design-time and run-time:

pFIBDataSetl.SelectSQL.Text := 'SELECT * FROM EMPLOYEE';
pFIBDataSetl.AutoUpdateOptions.AutoReWriteSgls := True;
pFIBDataSetl.AutoUpdateOptions.CanChangeSQLs := True;
pFIBDataSetl.AutoUpdateOptions.UpdateOnlyModifiedFields := True;
pFIBDataSetl.AutoUpdateOptions.UpdateTableName := 'EMPLOYEE';
pFIBDataSetl.AutoUpdateOptions.KeyFields = '"EMP NO';
pFIBDataSetl.AutoUpdateOptions.GeneratorName = 'EMP_NO GEN';

pFIBDataSetl.AutoUpdateOptions.WhenGetGenlID := wgBeforePost;
pFIBDataSetl.Open;

Local sorting

FIBPlus has local sorting methods, which helps you to order TpFIBDataSet buffer in any
possible way as well as the ability to remember and restore sorting after TpFIBDataSet has been
closed and reopened. In addition FIBPlus enables developers to use the mode where all newly
inserted and changed records will be placed to the correct buffer position according to the sorting
order. To sort TpFIBDataSet buffer you should call any of three following methods.
procedure DoSort (Fields: array of const; Ordering: array of Boolean);
virtual;
procedure DoSortEx (Fields: array of integer; Ordering: array of Boolean);
overload;
procedure DoSortEx (Fields: TStrings; Ordering: array of Boolean); overload;

The first parameters defines the list of fields, the second is an array of sorting orders. If you
set the sorting order to True it will be ascending, to False — descending.
Here are two examples of the same sorting by two fields in the ascending order:

pFIBDataSetl.DoSort ([/FIRST NAME’, ’'LAST NAME’], [True, Truel]);

or
pFIBDataSetl.DoSortEx([1l, 2], [True, Truel);

You can get the current sorting order by checking the following properties:

function SortFieldsCount: integer;
returns the sorting field number

function SortFieldInfo (OrderIndex:integer): TSortFieldInfo -
returns information about sorting in the OrderIndex position.

function SortedFields:string
returns a string with sorting fields enumerated by ;'

TSortFieldInfo = record

FieldName: string; //field name

InDataSetIndex: Integer; //whether included into index

InOrderIndex: Integer; //included ...

Asc: Boolean; //True, 1f ascendant

NullsFirst: Boolean; //True, if Null values are the first
end;

Set poKeepSorting property to True to put records to the right buffer position on inserting and
editing. Use the psGetOrderInfo option if you want to TpFIBDataSet automatically use the local
sorting order defined in the ORDER BY query statement.

Set psPersistentSorting option to True in order to keep the sorting order on TpFIBDataSet
reopening. Be careful, if you have huge selections this feature will not be effective because at
first the buffer will retrieve all records from the server and only then sort them.

Sorting of national symbols

Two parameters are responsible for correct sorting of national symbols: CHARSET (set of
symbols) and COLLATION (sorting order). Even if you correctly set these parameters in a
database and queries TpFIBDataSet may sort them incorrectly. The point is that default local
sorting uses the simplest method without comparing national symbols. As if NONE charset is
set.

TpFIBDataSet can sort national symbols according to the national charset. If you use the
OnCompareFieldValues event you can compare char fields in an alternative way. There are three
standard methods for Ansi-sorting:

protected function CompareFieldValues (Field:TField;const
S1,S2:variant) :integer; virtual;

public function AnsiCompareString(Field:TField;const vall, val2: variant):
Integer;

public function StdAnsiCompareString(Field:TField;const S1, S2: variant):
Integer;

AnsiCompareString is case-sensitive, and StdAnsiCompareString is not.

pFIBDataSetl.OnCompareFieldValues := pFIBDataSetl.AnsiCompareString;
pFIBDataSetl.OnCompareFieldValues := pFIBDataSetl.StdAnsiCompareString;

You can set any standard methods for CompareFieldValues as default or write your own
method if necessary.

Local filtering

In contrast to IBX, TpFIBDataSet has full support of local filtering. It supports the Filter and
Filtered properties and the OnFilterRecord event.

The table below shows the additional operators which can be used in the Filter property.

Operation Description

< Less than.

> Greater than.

>= Greater than or equal.

<= Less than or equal.

= Equal to

< Not equal to

AND Logical AND

NOT Logical NOT

OR Logical OR

IS NULL Tests that a field value is null

IS NOT NULL Tests that a field value is not null
+ Adds numbers, concatenates strings, adds number to date/time values

- Subtracts numbers, subtracts dates, or subtracts a number from a date

* Multiplies two numbers

/ Divides two numbers

Upper Upper-cases a string

Lower Lower-cases a string

Substring Returns the substring starting at a specified position

Trim Trims spaces or a specified character from front and back of a string
TrimLeft Trims spaces or a specified character from front of a string
TrimRight Trims spaces or a specified character from back of a string
Year Returns the year from a date/time value

Month Returns the month from a date/time value

Day Returns the day from a date/time value

Hour Returns the hour from a time value

Operation Description

Minute Returns the minute from a time value

Second Returns the seconds from a time value

GetDate Returns the current date

Date Returns the date part of a date/time value

Time Returns the time part of a date/time value

Like Provides pattern matching in string comparisons
In Tests for set inclusion

* Wildcard for partial comparisons.

If the Filter property is set to True and is not active, you can use the following methods to
navigate on records which satisfy the filtering conditions:

FindFirst
FindLast
FindNext
FindPrior

In case of huge data sets we recommend you to use the server filtering. It can be realized by
macros and conditions mechanisms.

To know more about local filtering see the example LocalFiltering.
Important: use the VisibleRecordCount function instead of RecordCount to get the number
of records by the Filter condition.

Data search

TpFIBDataSet supports Locate, LocateNext and LocatePrior methods, which are described in
a standard Delphi/C++Builder help manual.
Besides FIBPlus has some specific analogues which have some important advantages”

function ExtLocate(const KeyFields: String; const KeyValues: Variant;
Options: TExtLocateOptions): Boolean;

function ExtLocateNext (const KeyFields: String; const KeyValues: Variant;
Options: TExtLocateOptions): Boolean;

function ExtLocatePrior (const KeyFields: String; const KeyValues: Variant;
Options: TExtLocateOptions): Boolean;

TExtLocateOptions = (eloCaselnsensitive, eloPartialKey, eloWildCards, eloInSortedDS,
eloNearest, eloInFetchedRecords)

eloCaselnsensitive to ignore the case;

eloPartialKey partial coincidence

eloWildCards search by wild cards (similar to LIKE operator);

eloInSortedDS search in a sorted dataset (influences the search speed);
eloNearest only together with eloInSortedDS. It is placed where “must be”;

eloInFetchedRecords search only in fetched records.

Master and detail datasets
Besides a standard TDataSet Master-detail mechanism FIBPlus has an additional group of
options DetailCondition, described as:

TDetailCondition=(dcForceOpen,dcIgnoreMasterClose,dcForceMasterRefresh,
dcWaitEndMasterScroll) ;
TDetailConditions= set of TDetailCondition;

dcForceOpen if it is active, the detail TpFIBDatSets will be open on opening the
master ;

dclgnoreMasterClose ifit is active, the detail TpFIBDatSet won’t close on closing the master;

dcForceMasterRefresh if it is active, the current master record will be refreshed on refreshing
the the detail TpFIBDatSet;

dcWaitEndMasterScroll if it is active, on scrolling at master TpFIBDataSet will wait a little
before reopening the detail. This option helps to avoid useless
operations if the master navigation is simple.

Pessimistic locking

Standard record changing behavior of InterBase/Firebird servers is optimistic locking. If two
or more users edit the same record at the same time, only the first modification is written to the
database, and the second receives an exception error.

As a rule if you need a pessimistic locking in InterBase/Firebird, you use a «dummy update.
It means that the record is updated i.e. by the primary key before record editing:

update customer set cust no = cust_no where cust_no = :cust_no

Then the actual record is automatically fetched from the server. This behaviour helps to
guarantee that the record won’t be updated from another transaction before the end of the
dummy update transaction.

FIBPlus manages this process automatically. You need to activate the psProtectedEdit option
or use the the TpFIBDataSet.LockRecord method.

The demo example ProtectedEditing demonstrates how this feature works.

Work in the confined local buffer mode — for huge datasets and random access

The mode was first suggested by Sergey Spirin in gb_Datasets components. Now FIBPlus is also
capable of this feature (since version 6.0). It enables navigation of TpFIBDataSet without fetch-
ing all the records returned by the query. In fact it is simulation of random access to records by
means of supplementary queries. The technology sets a number of query requirements. In partic-
ular, one of the obligatory requirements is use of ORDER BY in SelectSQL. First, in ORDER
BY it's important to make the combination of field values unique. Second, to speed up data trans-
fer time it's better to have two indices - ascending and descending - for this field combination.

This simple example illustrates the technology. Having such a query in SelectSQL:

SELECT * FROM TABLE
ORDER BY FIELD

You may get some first records, fetching them successively. To see the last records immediately,
you may execute an additional query with descending sorting instead of querying all the records
from the server,:

SELECT * FROM TABLE
ORDER BY FIELD DESC

Obviously successive fetching of several records will result the last records (in relation to the ini-
tial query). Similar queries are for exact positioning on any record, as well as on records below
and above the current one:

SELECT * FROM TABLE
WHERE (FIELD = x)

SELECT * FROM TABLE
WHERE (FIELD < x)
ORDER BY FIELD DESC

SELECT * FROM TABLE
WHERE (FIELD > x)
ORDER BY FIELD

To carry out this technology TpFIBDataSet has a new property:
property CacheModelOptions: TCacheModelOptions, where

TCacheModelOptions = class(TPersistent)
property BufferChunks: Integer ;

property CacheModelKind: TCacheModelKind ;
property PlanForDescSQLs: string ;

end;

BufferChunks replaces the existing property BufferChunks of TpFIBDataSet. The TCacheMod-
elKind type can have a cmkStandard value for the standard local buffer work and a cmkLimited-
BufferSize value for the new technology of the confined local buffer. The buffer size is a number
of records set in BufferChunks.

The PlanForDescSQLs property enables to set a separate plan for queries with descending sort-
ing.

Note: when using the technology of the confined local buffer,

* You must not activate the CachedUpdate mode;

The RecNo property will return incorrect values;

Local filtering will not be supported;

Work with BLOB-fields may be not stable in the present version;
You should activate the psGetOrderInfo option in PrepareOptions.

Work with the internal dataset cache

TpFIBDataSet has several special methods for work with its internal record cache (this allows
you to excute prior without having to go back to the server). Actually these methods make
TpFIBDataSet an analogue of TClientDataSet oriented at InterBase. Its only difference from
TClientDataSet is that there must be a connection with the database and SelectSQL must have a
correct query. Despite these restrictions the mechanism is very flexible and helps to realize
numerous “non standard” things. For example this query will select one Integer field and one
String:

select cast(0 as integer) some_1d, cast(" as varchar(255)) some name
from RDBSDATABASE.

This would, if executed, return one row with an integer field (set to 0) and a string field with
an empty string.

You can open this TpFIBDataSet by calling the CacheOpen method. Then you can use the
following methods:
procedure CacheModify (aFields: array of integer; Values: array of Variant;
KindModify: byte);
procedure CacheEdit (aFields: array of integer; Values: array of Variant);
procedure CacheAppend(aFields: array of integer; Values: array of Variant);
overload;
procedure CacheAppend (Value: Variant; DoRefresh: boolean = False); overload;
procedure CachelInsert (aFields: array of integer; Values: array of Variant);
overload;
procedure Cachelnsert (Value: Variant; DoRefresh: boolean = False); overload;
procedure CacheRefresh (FromDataSet: TDataSet; Kind: TCachRefreshKind ;
FieldMap: Tstrings);
procedure CacheRefreshByArrMap(FromDataSet: TDataSet; Kind:
TCachRefreshKind; const SourceFields, DestFields: array of string)

to add a record execute:
pFIBDataSet1.Cachelnsert([0,1],[255, 'string1'])
to modify:
pFIBDataSet1.CacheModify([0,1],[255, 'string1'])
to delete from cache, call CacheDelete;

The CacheRefresh and CacheRefreshByArrMap methods enable to refresh a record on basis
of data from another TpFIBDataSet.

All these operations do not change the database as they are executed in TpFIBDataSet cache.

Sometimes you can also use this technique in a standard mode. For example when you need to
insert a record using some complex stored procedure, which returns the code of the inserted
record, and then to show the code in TpFIBDataSet. You can insert the code and call the Refresh
method:

id := SomelnsertByProc;
pFIBDataSet1.Cachelnsert([0], [1]);
pFIBDataSet1.Refresh;

In addition you could also delete some non-existing records from cache without having to
refresh the query.

	FIBPlus Developer’s Guide
	Part I
	Connection parameters
	How to create and drop database
	Metadata caching
	Other useful methods
	How to execute simple SQL- queries
	How to get generator values
	How to get information about tables and fields

	Working with transactions
	How to set transaction parameters
	Planning to use transactions in the application
	How to use SavePoints

	SQL-query execution
	How to transfer parameters
	SQL- sections
	Macros
	Conditions
	Batch processing
	How to execute DDL(Data Definition Language) commands.
	Recurrent use of queries

	Work with datasets
	Basic principles of work with datasets
	Automatic generation of Update queries
	Local sorting
	Sorting of national symbols

	Local filtering
	Data search
	Pessimistic locking
	Work in the confined local buffer mode – for huge datasets and random access
	Work with the internal dataset cache

