
FIBPlus Developers Guide
Part II
Working with BLOB fields

There can be advantages in storing non-structured data in your database, such as images, OLE-
objects, sounds, etc. For this you will need to use a special data type - BLOB. SQL queries for
BLOB fields do not differ from queries for standard field types; work with these fields in
TpFIBDataSet does not differ from TDataSet work. The only difference from an ordinary data type
is that you should use streams (special TStream descendants) to set values of the BLOB-parameter.

Before setting the BLOB-parameter value you should put the TpFIBDataSet into edit mode by
calling TpFIBDataSet.edit (dsEdit).

Use the TFIBCustomDataset method for work with BLOB fields
function CreateBlobStream(Field: TField; Mode: TBlobStreamMode): TStream;
override;

If you call CreateBlobStream it creates an instance of TFIBDSBlobStream. It enables data
exchange between the BLOB-parameter and the stream, which reads the image from the file. The
Field parameter defines a BLOB field, on which a stream will be based. The Mode parameter
defines the mode.
type TBlobStreamMode = (bmRead, bmWrite, bmReadWrite);

bmRead the stream is used to read a BLOB field;

bmWrite the stream is used to write a BLOB field;

bmReadWrite the stream is used to modify a BLOB field.

In this example we are using two procedures, one saves a file into BLOB, and the other loads the
BLOB field into the file.
procedure FileToBlob(BlobField: TField; FileName: string);
var S: TStream; FileS: TFileStream;
begin
 BlobField.DataSet.Edit;
 S := BlobField.DataSet.CreateBlobStream(BlobField, bmReadWrite);
 try
 FileS := TFileStream.Create(FileName, fmOpenRead);
 S.CopyFrom(FileS, FileS.Size);
 finally
 FileS.Free;
 S.Free;
 BlobField.DataSet.Post;
 end;
end;
procedure BlobToFile(BlobField: TField; FileName: string);
var S: TStream;
 FileS: TFileStream;
begin
 if BlobField.IsNull then Exit;
 S := BlobField.DataSet.CreateBlobStream(BlobField, bmRead);
 try
 if FileExists(FileName)
 then FileS := TFileStream.Create(FileName, fmOpenWrite)
 else FileS := TFileStream.Create(FileName, fmCreate);
 FileS.CopyFrom(S, S.Size);
 finally
 S.Free;

1

 FileS.Free;
 end;
end;

If you use TpFIBQuery with BLOB-fields you still use streams, but in contrast to TpFIBDataSet,
you should not create any special streams. TFIBSQLDA has built-in SaveToStream and
LoadFromStream methods. I.e. for TpFIBQuery you only need to write:

pFIBQuery1.FN('BLOB_FIELD').SaveToStream(FileS);

Using unique FIBPlus field types
FIBPlus has several unique fields: TFIBLargeIntField, TFIBWideStringField,

TFIBBooleanField, TFIBGuidField.
TFIBLargeIntField

It is a BIGINT field in InterBase/ Firebird.
TFIBWideStringField

It is used for string fields in UNICODE_FSS charset. In most cases you cannot usea standard
TWideString because of multiple VCL errors.
TFIBBooleanField

It emulates a logical field. InterBase and Firebird do not have a standard logical field, so FIBPlus
enables you to easily emulate it. For this create a domain (INTEGER or SMALLINT) with a
BOOLEAN substring in its name. Set psUseBooleanFlields to True in PrepareOptions in
TpFIBDataSet. On creating field objects FIBPlus will check the domain name and if they
haveBOOLEAN types, FIBPlus will create TFIBBooleanField instances for these fields.
CREATE DOMAIN FIB$BOOLEAN AS SMALLINT
DEFAULT 1 NOT NULL CHECK (VALUE IN (0,1));

TFIBGuidField
It works similar to TFIBBooleanField: a field should be declared in the domain and the domain

name should have GUID. psUseGuidField should be set to True. This example illustrates how to
declare a domain:
CREATE DOMAIN FIB$GUID AS CHAR(16) CHARACTER SET OCTETS;

If AutoGenerateValue is set to True, the field values will be set automatically on inserting field
values.

How to work with array fields
Since its early versions InterBase enables to use multidimensional array fields and thus to store

specialized data in a convenient way. InterBase array fields are not supported by the SQL standard
so it’s very difficult to work with such fields using SQL queries. In practice you can use array fields
item by item and only in read-only operations. To change array field values you should use special
InterBase API commands. FIBPlus helps you to avoid such difficulties and handles array fields
itself.

You can see how to work with array fields in the demo example in demo database EMPLOYEE
supplied with the server. The LANGUAGE_REQ field in the JOB table is an array
(LANGUAGE_REQ VARCHAR(15) [1:5])

The first example shows how to edit an array field using such special methods as TpFIBDataSet
ArrayFieldValue and SetArrayValue, as well as GetArrayValues, SetArrayValue and AsQuad in
TFIBXSQLDA. These methods enable you to work with this field as a united structure.
TFIBXSQLDA.GetArrayElement helps you to get an array element value by index.

TpFIBDataSet.ArrayFieldValue and TFIBXSQLDA.GetArrayValues methods get a variant array
2

from array field values. E.g. use the following code to get separate elements:
var v: Variant;
with ArrayDataSet do begin
 v := ArrayFieldValue(FieldByName('LANGUAGE_REQ'));
 Edit1.Text := VarToStr(v[1]);
end;

TpFIBDataSet.SetArrayValue and TFIBXSQLDA.SetArrayValue methods enable you to define
all field elements as a variant array:
with ArrayDataSet do
 SetArrayValue(FBN('LANGUAGE_REQ'), VarArrayOf([Edit1.Text, ...]));

Newest FIBPlus versions have a simple solution: you can set the variant array directly:
 FBN('LANGUAGE_REQ').Value := VarArrayOf([Edit1.Text, ...]);

It’s easy to set the field values in the BeforePost event. If Update or Insert operations are not
successful, you need to restore the internal array identifier of the editable record. For this you need
to refresh the current record by calling the Refresh method. This rule is set by InterBase API
functions, so FIBPlus should take it into consideration. So the event handler is very important for
working with array fields. You can place it into OnPostError.
procedure ArrayDataSetPostError(DataSet: TDataSet; E: EDatabaseError; var
Action: TDataAction);
begin
 Action := daAbort;
 MessageDlg('Error!', mtError, [mbOk], 0);
 ArrayDataSet.Refresh;
end;

The TFIBXSQLDA.AsQuad function for array fields and BLOB’s has the field BLOB_ID. 
Examples ArrayFields1 and ArrayFields2 demonstrate how to work with array fields.

ArrayFields1 shows how to extract an array from a field, ArrayFields2 selects an array directly
from SelectSQL. Both examples write a field into a database packing it into an array field

Firebird 1.5.X releases have an error, returning the wrong length for string fields. That’s whu
you can see a strange last symbol «|» in string array elements.

Using TDataSetsContainer containers
The TDataSetContainer component helps developers to use centralized event handling for

different TpFIBDataSet components and to send messages to these components forcing them to
execute some additional actions. I.e. before opening all TpFIBDataSets you can set parameters for
displaying fields, save and restore sorting, etc. You can get the same results by assigning one
handler to several TpFIBDataSets. But it is more convenient to use TDataSetContainer, because
you can place it on a separate TDataModule as well as its handlers and thus keep the application
code outside visual forms.

Besides you can use TDataSetContainer to set one function for local sorting of all connected
TpFIBDataSets.
TKindDataSetEvent = (deBeforeOpen, deAfterOpen, deBeforeClose,
 deAfterClose, deBeforeInsert, deAfterInsert, deBeforeEdit, deAfterEdit,
 deBeforePost, deAfterPost, deBeforeCancel, deAfterCancel, deBeforeDelete,
 deAfterDelete, deBeforeScroll, deAfterScroll, deOnNewRecord, deOnCalcFields,
 deBeforeRefresh, deAfterRefresh)

3

In FIBPlus 6.4.2 upwards, the container can be global for all TpFIBDataSet instances. For this
you need to set the IsGlobal property to True.

You can also build container chains by using the MasterContainer property. When you “inherit”
MasterContainer behaviour you expand container behaviour.

Additional actions for TpFIBUpdateObject data modifying
Besides using standard TpFIBDataSet modifying queries you can set various additional actions

by using TpFIBUpdateObject objects. TpFIBUpdateObject is a TpFIBQuery descendant, a “client
trigger” which sets additional actions for TpFIBDataSet before or after Insert/Modify/Delete
operations. Read more details about TpFIBQuery descendant properties and methods in the
Supplement.

I.e. you have a master –detail link master(id, name) and detail(id, name, master_id) and you want
to automatically delete all dependant data from detail table on deleting records from master. You
should add the pFIBUpdateObject object. Then set the property SQL 'delete from deatail where
master_id = :id'; set the DataSet property to the dataset for the master table; set KindUpdate to
kuDelete and make it execute before the main DataSet operator ExecuteOrder oeBeforeDefault.

Now an operator from the linked pFIBUpdateObject will be executed before record deleting
from MasterDataSet.

Working with shared transactions
As we have already mentioned in “Work with transactions”, you should make Update

transactions as short as possible. TpFIBDataSet is unique as it can work in the context of two
transactions: Transaction and UpdateTransaction. We recommend you to use this method as it is the
most correct for work with InterBase/Firebird. Data are read-only in a long-running transaction,
whereas all modifying queries are executed in a short-running transaction.

The reading transaction (Transaction), as a rule, is ReadCommited and read-only (in order not to
retain record versions). We recommend the following parameters for Transaction: read, nowait,
rec_version, read_committed. The updating transaction (UpdateTransaction) is short and
concurrent, its recommended parameters are: write, nowait, concurency. If you set AutoCommit =
True, each change of TpFIBDataSet will be written to a database and become available to other
users.

Note: use the shared transaction mechanism and AutoCommit very carefully, especially in
master-detail links. In order not to get errors you should know well when the transactions start and
close.

Batch processing
TpFIBDataSet has several methods for batch processing: BatchRecordToQuery and

BatchAllRecordToQuery, which execute an SQL query. This query is set in TpFIBQuery, which is
transferred as a parameter.

See DatasetBatching example to get to know how to use these methods.

Centralized error handling – TpFIBErrorHandler
FIBPlus provides developers with a mechanism of centralized handling of errors and exceptions

which occur with FIBPlus components. For this use the TpFIBErrorHandler component with the
OnFIBErrorEvent event:
TOnFIBErrorEvent = procedure(Sender: TObject; ErrorValue: EFIBError;
 KindIBError: TKindIBError; var DoRaise: boolean) of object;

4

где
TKindIBError = (keNoError, keException, keForeignKey, keLostConnect,
 keSecurity, keCheck, keUniqueViolation, keOther);

EFIBError = class(EDatabaseError)
 //..
 property SQLCode : Long read FSQLCode ;
 property IBErrorCode: Long read FIBErrorCode ;
 property SQLMessage : string read FSQLMessage;
 property IBMessage : string read FIBMessage;
end;

The option DoRaise manages FIBPlus behaviour after the handler execution, i.e. it shows
whether a standard exception will be generated.

This option can be used for standard handling of different error types described in KindIBError.

FIBPlus versions 6.4.2 upwards have new properties in TpFIBErrorHandler. They enable
developers to work with localized server messages correctly. You should set such string properties
as Index, Constraint, Exception and At.

Getting TFIBSibEventAlerter events
Use the TFIBSibEventAlerter component to get database events. Define the Database property to

show which connection events will be monitored. Then define necessary event names in Events and
set Active to True to activate the component.

On getting the component event the OnEventAlert event handler will be executed. It is declared
as:
procedure (Sender: TObject; EventName: String; EventCount: Integer);

where EventName is an event name, EventCount is a number of events executed.

Remember that events will be sent only on committing the transaction in which context it
occurred. So several events can occur before ObEventAlert.

The Events example demonstrates how to use events in FIBPlus.

Debugging FIBPlus applications
FIBPlus provides developers with a powerful mechanism for SQL control and debugging. You

can use the SQL monitor and a feature for SQL statistics gathering while working with the
application.

Monitoring SQL queries
TFIBSQLMonitor is responsible for SQL query monitoring. To use it you should define any

information type in TraceFlags and write the OnSQL event handler. This feature is demonstrated in
the SQLMonitor demo example.

Registering executable queries
The TFIBSQLLogger component logs SQL query execution and keeps SQL query execution

statistics.

Properties:
property ActiveStatistics:boolean - shows whether the statistics is active

property ActiveLogging:boolean - shows whether the logging is active

property LogFileName:string - defines the logging file

property StatisticsParams :TFIBStatisticsParams - defines statistics parameters
5

property LogFlags: TLogFlags - defines which operations are logged

property ForceSaveLog:boolean – defines whether to save a log after every query execution

Methods
function ExistStatisticsTable:boolean; - checks whether the statistics table exists

procedure CreateStatisticsTable; - creates a statistics table

procedure SaveStatisticsToDB(ForMaxExecTime:integer=0); - saves the statistics into a table.
This parameter shows statistics of certain queries which we are interested in (you should set the
minimal query execution time). Statistics will be saved for queries executed longer than
ForMaxExecTime or equal to ForMaxExecTime.

 procedure SaveLog; - saves a log into a file (valid if ForceSaveLog is set to True).

The SQLLogger example shows how to work with the TFIBSQLLogger component.

FIBPlus repositories
FIBPlus has three repositories enabling developers to save and use TpFIBDataSet settings,

TFields settings and error messages. To use FIBPlus repositories you should set the
UseRepositories property (urFieldsInfo, urDataSetInfo, urErrorMessagesInfo) in TpFIBDatabase
(defining which repositories you need).

You can learn how to use all repositories from the DataSetRepository, ErrorMessagesRepository
and FieldsRepository examples.

Dataset repository
To use the dataset repository in the TpFIBDataSet context menu use «Save to DataSets

Repository table» and «Choose from dataSets Repository table». «Save to DataSets Repository
table» menu item enables you to save main TpFIBDataSet properties into a special table
FIB$DATASETS_INFO, whereas «Choose from dataSets Repository table» helps to load properties
from the component already saved in the repository. If the table does not exist in the database, you
will be asked to create it. To save the TpFIBDataSet properties into a database you should set a
DataSet_ID value (not equal to zero).

6
Picture 5. DataSets repository dialog

Then you should set DataSet_ID when running the application and the TpFIBDataSet properties
will be loaded from the database table.

As you see in picture 5, FIBPlus saves main SQL queries as well as Conditions and
AutoUpdateOptions properties.

Repository mechanism provides you with better application flexibility and enables you to change
the program without recompiling it. You should only replicate repository tables.

Field repository
Get access to the field repository by opening the TpFIBDatabase context menu: «Edit field

information table».

You can set such properties as DisplayLabel, DisplayWidth, Visible, DisplayFormat and
EditFormat for any table field, view and Select procedure. The TRIGGERED value helps to select
fields which will be filled in the trigger and which do not require user values even if they are
Required (NOT NULL).

You should also set the psApplyRepository parameter in TpFIBDataSet.PrepareOptions in order
to get TField settings from the repository on opening the query.

Using field aliases in SQL queries you can see that the settings are not applied for them. This is
correct because physical tables do not have aliases. Nevertheless FIBPlus field repository enables
you to have settings for such fields with aliases: write ALIAS instead of the table name in the
repository.

In version FIBPlus 6.4.2 upwards the dataset has a standard event:
TonApplyFieldRepository=procedure(DataSet:TDataSet;Field:TField;FieldInfo:TpFIBFieldInfo)
of object;

It enables developers to use their own settings in the field repository. For example if you want to
define the EditMask property, add the EDIT_MASK field to the repository table, define the
container in the application and make it global. Then write the following code in the
OnApplyFieldRepository event handler:

procedure TForm1.DataSetsContainer1ApplyFieldRepository(DataSet: TDataSet;

 Field: TField; FieldInfo: TpFIBFieldInfo);

begin

 Field.EditMask:=FieldInfo.OtherInfo.Values['EDIT_MASK'];

7

end;

Error message repository
To get access to FIBPlus error message repository use the context menu of the TpFIBDatabase:

«Edit error messages table». Using it you can create your own error messages for such cases as
primary key (PK) violation, constraints (unique, FK, checks) and unique indices.

To use the error message repository place the TpFIBErrorHandler component on a form or
project module and activate the repository. All texts of errors in the repository will be automatically
replaced by your own error messages.

Supporting Firebird 2.0
FIBPlus is compatible with Firebird 2.0, it supports all Firebird 2.0 features.

Now you ca use Execute block statements in SelectSQL.

Now the poAskRecordCount option correctly works in all cases because it uses the statement “select
count from” (where “select” is your original selection).

The TpFIBDatabase component has two new methods supporting new Firebird 2 commands:
RDB$GET_CONTEXT and RDB$SET_CONTEXT:

8

Picture 6. Field repository

Picture 7. Error repository

function GetContextVariable (ContextSpace: TFBContextSpace; const VarName:
string): Variant;
procedure SetContextVariable (ContextSpace: TFBContextSpace; const VarName,
VarValue: string);
FIBPlus also supports FB2.0 insert ... into ... returning. Now you should not bother about getting
generator values from the client but leave them in the trigger. You can also use RDB$DB_KEY.
New possible variants of work with insert returning and RDB$DB_KEY are shown in the example
“FB2InsertReturning”.

If you have queries joining a table with itself:

Select * from Table1 t, Table1 t1

where

using Firebird 2.0 FIBPlus can understand correctly whether each field was taken from t or t1. This
feature helps to generate FIBPlus modifying queries.

9

Additional features
Full UNICODE_FSS support

FIBPlus version 6.0 upwards correctly works with CHARSET UNICODE_FSS. For this you
should use visual components supporting Unicode, e.g. TntControls.

To support Unicode FIBPlus has five new field types:

TFIBWideStringField = class(TWideStringField) – for work with VARCHAR,CHAR;
TFIBMemoField = class(TMemoField, IWideStringField) – for BLOB fields where
IWideStringField is an interface for visual TNT components
(http://tnt.ccci.org/delphi_unicode_controls)

The psSupportUnicodeBlobs option in TpFIBDataSet.PrepareOptions enables you to work with
UNICODE_FSS BLOB fields. By default it is not active, because you need to execute additional
query to know a charset for a certain BLOB field. If you do not work with UNICODE, the query
will be unnecessary.

TpFIBDatabase has a new method function IsUnicodeCharSet: Boolean, which returns True if
the connection uses UNICODE_FSS.

The FIBXSQLVAR class has a new property AsWideString: WideString which returns
WideString.

NO_GUI compilation option
FIBPlus 6.0 upwards has a new compilation option: NO_GUI. Using it the library does not refer

to standard modules with visual components. This helps you to write applications for system (not
user) tasks. See {$DEFINE NO_GUI} in FIBPlus.inc.

Using SynEdit in editors
If you have installed SynEdit components, you can compile editor packages with SynEdit. Then

SQL editor will have SQL operator syntax highlighting and the CodeComplete tool. See the define
{$DEFINE USE_SYNEDIT} in pFIBPropEd.inc.

Important: you cannot change compilation defines using the trial FIBPlus version.

Unique tools: FIBPlusTools
Besides components FIBPlus has additional tools FIBPlus Tools, which extend IDE features and

enable you to use FIBPlus at design-time more effectively.

Preferences
Preferences help you to set default parameters of the main components. On the first dialog page

you can set default values for Options, PrepareOptions and DetailsConditions for all TpFIBDataSet
components. You can also set certain keys for these properties. For example if you make
SetRequiredFields active, then placing a new TpFIBDataSet component onto the form, you will see
that its PrepareOptions property will have pfSetRequiredFields defined. It is important that default
settings in FIBPlus Tools Preferences are valid for all new applications that you create. Notice that
this concerns only initial defaults: if you change component properties after dropping the
component onto the form, Preferences won’t have these changes. Besides when changing
Preferences, you do not change components which properties were already defined.

10

Prefix Generator name and Suffix Generator name fields are important. Setting them you can
form generator names in the AutoUpdateOptions property in TpFIBDataSet. The generator name in
AutoUpdateOptions is formed from the table name (UpdateTable), its prefix and suffix.

The following dialog pages help to define main properties for TpFIBDataBase,
TpFIBTransaction and TpFIBQuery. In particular if you always work with newest
InterBase/Firebird versions (e.g InterBase version 6 upwards), set SQL Dialect=3 in
TpFIBDatabase, then you won’t need to set it manually all the time.

SQL Navigator
It’s the most interesting part of FIBPlus Tools which has no analogues in other products. This

tool helps to handle SQL centrally for the whole application.

SQL Navigator enables you to have access to SQL properties of any component from one place.

The button «Scan all forms of active project» scans all application forms and selects those which
contain FIBPlus components for work with SQL: TpFIBDataSet, TpFIBQuery,
TpFIBUpdateObject and TpFIBStoredProc. Select any of these forms. The list in the right will be
filled with components found on this form. Of you click any component you will see their
corresponding properties with the SQL code. For TpFIBDataSet there will be shown such
properties as SelectSQL, InsertSQL, UpdateSQL, DeleteSQL and RefreshSQL. For TpFIBQuery,
TpFIBUpdateObject and TpFIBStoredProc FIBPlus will show an SQL property value.

You can change any property directly from SQLNavigator and its new value will be saved.
SQLNavigator helps to work with groups of components. You only need е select corresponding
components or forms.

“Save selected SQLs” saves values of selected properties into an external file.

11

Picture 8. Tools Preferences.

“Check selected SQLs” checks selected SQL queries on correctness in SQLNavigator.

Then you can analyze the file with selected queries by using special tools.

You can also use SQLNavigator for text searching in the SQL of the whole project.

By double clicking any found item you make SQLNavigator select a component and a property
and thus can edit SQL.

12

Picture 9. Tools SQL Navigator

How to work with services
Besides the main component palette FIBPlus also has FIBPlus Services. These components are

intended for getting information about InterBase/Firebird servers, user control, database parameter
setting and database administration.

More details about each issue you can read in InterBase manuals (OpGuide.pdf, parts «Database
Security», «Database Configuration and Maintenance», «Database Backup and Restore» and
«Database and Server Statistic»).

The Services demonstration example shows how to work with services. Besides you can see a
good example in Delphi/C++BuilderL: DelphiX\Demos\Db\IBX\Admin\. Though being written for
IBX, this example suits well for FIBPlus.

All services components are TpFIBCustomService descendants and have such properties and
methods as: ServerName – a server name used for connection; Protocol – a connection protocol;
UserName – a user name; and Password – a user password.

In general work with services is the following: at first you define connection properties (server,
protocol, user and password). The you connect to the server (Attach := True), execute necessary
operations and disconnect (Attach := False). This sequence of actions is demonstrated in the code
below and is necessary for any service.
with TpFIBXXXService.Create(nil) do
try
 ServerName := <server_name>;
 Protocol := <net_protocol>;
 UserName := <user_name>;
 Password := <password>;
 Atach;
 try
 //executed operations
 finally
 Deatach;
 end;
finally
 Free;
end;

Getting server information
Using the TpFIBServerProperties component you can get information about licenses, server

configuration, a number of users connected to the database and a number of connected databases.
For more details about properties, events and methods please see the DevGuide Supplement. In
general you should connect to the server, define necessary information and get it using the Fetch
method.

Parameters and results are described in the module IB_Services.pas. The following record keeps
information about the number of server connections, the number of active databases operated by the
server and their names:
 TDatabaseInfo = record
 NoOfAttachments: Integer;
 NoOfDatabases: Integer;
 DbName: Variant;
 end;

These two records have information about InterBase server licenses:
 TLicenseInfo = record

13

 Key: Variant;
 Id: Variant;
 Desc: Variant;
 LicensedUsers: Integer;
 end;
 TLicenseMaskInfo = record
 LicenseMask: Integer;
 CapabilityMask: Integer;
 end;
 TConfigFileData = record
 ConfigFileValue:Variant;
 ConfigFileKey:Variant;
 end;
 TConfigParams = record
 ConfigFileData: TConfigFileData;
 BaseLocation: string;
 LockFileLocation: string;
 MessageFileLocation: string;
 SecurityDatabaseLocation: string;
 end;

This record shows information about the server version:
 TVersionInfo = record
 ServerVersion: String;
 ServerImplementation: string;
 ServiceVersion: Integer;
 end;
 TPropertyOption = (Database, License, LicenseMask, ConfigParameters, Version);
 TPropertyOptions = set of TPropertyOption;
 TpFIBServerProperties = class(TpFIBCustomService)
 procedure Fetch;
 procedure FetchDatabaseInfo;
 procedure FetchLicenseInfo;
 procedure FetchLicenseMaskInfo;
 procedure FetchConfigParams;
 procedure FetchVersionInfo;
 property DatabaseInfo: TDatabaseInfo
 property LicenseInfo: TLicenseInfo
 property LicenseMaskInfo: TLicenseMaskInfo
 property ConfigParams: TConfigParams
 property Options : TPropertyOptions
 end;

The TpFIBLogService component is used for server logging.

Most services return text information using the OnTextNotify event of the
TserviceGetTextNotify type. This type is described in IB_Services as:
 TServiceGetTextNotify = procedure (Sender: TObject; const Text: string) of
object;

TpFIBLogService uses this type of notification.

When working with these services you need to set the reaction on the OnTextNotify event
(which starts the service and reads the information). The information is read as:
 ServiceStart;

14

 while not Eof do
 GetNextLine;

So the complete code will be the following:

with TpFIBXXXService.Create(nil) do
try
 ServerName := <server_name>;
 Protocol := <net_protocol>;
 UserName := <user_name>;
 Password := <password>;
 Atach;
 try
 ServiceStart;
 while not Eof do
 GetNextLine;
 finally
 Deatach;
 end;
finally
 Free;
end;

On working with some other similar services you should set different options.

For more details check the Services example.

Managing server users
TpFIBSecurityService is responsible for work with users. It has methods which enable you to get

user info, as well as to add, modify and delete users. If you use this component you can get the
following information:

A record with user information at the server:
 TUserInfo = class
 public
 UserName: string;
 FirstName: string;
 MiddleName: string;
 LastName: string;
 GroupID: Integer;
 UserID: Integer;
 end;

Available properties and methods of the component:
 TpFIBSecurityService = class(TpFIBControlAndQueryService)
 procedure DisplayUsers;
 procedure DisplayUser(UserName: string);
 procedure AddUser;
 procedure DeleteUser;
 procedure ModifyUser;
 procedure ClearParams;
 property UserInfo[Index: Integer]: TUserInfo read GetUserInfo;
 property UserInfoCount: Integer read GetUserInfoCount;
 property SQlRole : string read FSQLRole write FSQLrole;
 property UserName : string read FUserName write FUserName;
 property FirstName : string read FFirstName write SetFirstName;
 property MiddleName : string read FMiddleName write SetMiddleName;
 property LastName : string read FLastName write SetLastName;

15

 property UserID : Integer read FUserID write SetUserID;
 property GroupID : Integer read FGroupID write SetGroupID;
 property Password : string read FPassword write setPassword;
 end;

Use the DisplayUser method to get information about the server user (using the user name as a
parameter). DisplayUsers is used to get information about all users. After calling DisplayUser or
DisplayUsers you will see the number of users in the UserInfoCount property; the UserInfo index
property will return a user record by its index.

To add a new user you should set the following properties: UserName, FirstName, MiddleName,
LasName, Password; and execute the AddUser method. DeleteUser and ModifyUser methods work
in the same way as AddUser; they require UserName as a minimal obligatory parameter.

Note:

• the Password property is not returned by DisplayUser and DisplayUsers methods.

• The SQLRole property cannot be used to associate a role with a user.

For these operations you should execute queries using TpFIBQuery (GRANT/REVOKE).

The Services example demonstrates all aspects of work with server users.

Configuring databases
TpFIBConfigService helps to set such parameters as:

• set an interval for the automatic garbage collection in the transaction (Sweep Interval);

• set a mode of writing changes on the disk (Async Mode);

• set the DB page size;

• set the reserved space for the DB;

• set the read-only mode;

• activate and deactivate the shadow

It also helps to:

• shutdown the database (shutdown)

• start the database (online).

Before working with this service you should set the property
 property DatabaseName: string

A path to the DB at the server

To set the interval for the automatic garbage collection in the transaction you should use the
SetSweepInterval method. The only SetSweepInterval parameter is the interval, and by default
it is equal to 20000.
 procedure SetSweepInterval (Value: Integer);

To set the database dialect you should use the SetDBSqlDialect method; its parameter is the DB
dialect. Only three parameters are supported: 1, 2, 3.
 procedure SetDBSqlDialect (Value: Integer);

To set PageBuffers use the SetPageBuffers method; its parameter is the required buffer size.
 procedure SetPageBuffers (Value: Integer);

16

To activate the shadow use the ActivateShadow method. It doesn’t require any parameters.
 procedure ActivateShadow;

To set the asynchronous writing mode you should set the SetAsyncMode method to True; to
deactivate this mode – to False.
 procedure SetAsyncMode (Value: Boolean);

To set the read-only mode use the SetReadOnly method. If it is set to True, the read-only mode
is active; if it is set to False, the read-only mode is deactivated. This mode is used when you prepare
a database for distribution on CD or other mediums
 procedure SetReadOnly (Value: Boolean);

Use SetReserveSpace to set the reserved space for the DB:
 procedure SetReserveSpace (Value: Boolean);

Use the ShutdownDatabase method to shutdown the database. There are three types of shutting
the database down: forced, denying new transactions and denying new connections. All the above
mentioned operations should be better done under the SYSDBA administrator’s connection.
 procedure ShutdownDatabase (Options: TShutdownMode; Wait: Integer);

TShutdownMode = (Forced, DenyTransaction, DenyAttachment);
Use the BringDatabaseOnline method to bring the database online.

 procedure BringDatabaseOnline;

Backing up and restoring databases
TpFIBBackupService and TpFIBRestoreService components help to use database backup and

restore functions.

TpFIBValidationService enables you to gather garbage, check the database on errors and repair
it if necessary.

Options play a very important role when you backup, restore and check the database. All these
options are described in the server manual OpGuide.pdf.

Backup and restore services are simple, and you can work with them in the same way as
FIBLogService. The only peculiar thing is the interpretation of their work results:

If you need to be sure there were no errors during the DB backup/restore, you should see the
operation log. In case of errors the log will have a string «GBAK: ERROR»

If TpFIBValidationService did not find any errors, its log will contain one empty string.

If the database repairing caused errors (the Mend TpFIBValidationService option), they will be
written to the server log.

Remember that TpFIBBackupService creates the backup file at the server; the server does the
backup of the DB and keeps the file there. But you can do the backup from another server as well.
Write a full path to the database in the connection path:
with TpFIBXXXService.Create(nil) do
try
 ServerName := <local_backup_server_name>;
 Protocol := <net_protocol>;
 UserName := <user_name>;
 Password := <password>;
 DatabaseName := <remote_db_name>;

17

 BackupFile.Add(<local_backup_name>);
 Atach;
 try
 ServiceStart;
 while not Eof do
 GetNextLine;
 finally
 Deatach;
 end;
finally
 Free;
end;

These services can work with Embedded server too (remember to set the Local protocol when
working with Firebird Embedded Server).

Getting statistics about database
Use the TpFIBStatisticalService component to get important statistics about working database. It

is similar to TpFIBLogService.

18

	FIBPlus Developers Guide
	Part II
	Working with BLOB fields
	Using unique FIBPlus field types
	TFIBLargeIntField
	TFIBWideStringField
	TFIBBooleanField
	TFIBGuidField

	How to work with array fields
	Using TDataSetsContainer containers
	Additional actions for TpFIBUpdateObject data modifying
	Working with shared transactions
	Batch processing

	Centralized error handling – TpFIBErrorHandler
	Getting TFIBSibEventAlerter events
	Debugging FIBPlus applications
	Monitoring SQL queries
	Registering executable queries

	FIBPlus repositories
	Dataset repository
	Field repository
	Error message repository

	Supporting Firebird 2.0
	Additional features
	Full UNICODE_FSS support
	NO_GUI compilation option
	Using SynEdit in editors
	Unique tools: FIBPlusTools
	Preferences
	SQL Navigator

	How to work with services
	Getting server information
	Managing server users
	Backing up and restoring databases
	Getting statistics about database

